
Numerically Solving Ordinary Differential 
Equations (ODEs):  Euler’s Method



A differential equation is any equation that contains one or more 
derivatives:

Differential Equations

dx
dt

= v0Constant velocity motion:

m
d2x
dt2

+ kx = 0Simple harmonic oscillator:

m
d2 ⃗r
dt2

= q ⃗E + q ⃗v × ⃗BMotion of a charge in E and B fields:

Poisson’s equation:
∂2ϕ
∂x2

+
∂2ϕ
∂y2

+
∂2ϕ
∂z2

= −
ρ
ϵ0



Ordinary differential equations (ODEs) - single independent variable. 

Differential Equations

dx
dt

= v0 m
d2x
dt2

+ kx = 0

Partial differential equations (PDEs) - multiple independent variables.

∂2ϕ
∂x2

+
∂2ϕ
∂y2

+
∂2ϕ
∂z2

= −
ρ
ϵ0



The order of an ODE is given by the highest derivative present

Ordinary Differential Equations (ODEs)

1st order ODEs:
dx
dt

= v0
dx
dt

= − kx2

2nd order ODEs: m
d2x
dt2

+ kx = 0 m
d2 ⃗r
dt2

=
kq1q2

| ⃗r |2

m
d2 ⃗r
dt2

= q ⃗E + q ⃗v × ⃗B

2nd order ODEs often result from Newton’s second law: Fnet = m
d2x
dt2



Solve an ODE analytically if you can

m
d2x
dt2

+ kx = 0 x(t) = A sin(ω t) + B cos(ω t) ω =
k
m

If you can’t, use numerical methods
d2x
dt2

− μ(1 − x2)
dx
dt

+ x = 0 x(t) = ??



Numerical Integration of a First-Order ODE

tn tn+1 tn+2tn−1tn−2

In general, we want to solve:  
dx
dt

= f(x, t) = v(x, t)

Numerical integration is like analyzing frames of a movie, where the time between 
frames is .Δt = tn+1 − tn Δt



Euler Method

dx
dt

= v
xn+1 − xn

Δt
= vn

Approximate the derivative:

xn xn+1 xn+2xn−1xn−2

Solve for the position :xn+1 xn+1 = xn + vnΔt (Euler update rule)

Goal:  predict the position of an object on the next frame of the movie, given 
its current position 

xn+1
xn



Euler Method

xn+1

tn+1

xn

tn

x(t)

x

t

xn+1 = xn + vnΔt
Approximate  as a Taylor series:   x(t)

x(tn + Δt) ≈ xn + ( dx
dt )

tn

Δt + ( d2x
dt2 )

tn

Δt2 + . . .

The Euler method is said to be    
first-order accurate

The Euler method is equivalent to 
including the constant term and the 
linear term 

dx
dt

= f(x, t)

slope = 
dx
dt

= f(xn, tn)

Δt

true path



Euler Method

xn+1

tn+1

xn

tn

x(t)

x

t

xn+1 = xn + vnΔt

tn+2

xn+2

tn+3

xn+3

Δt



Reducing time step helps reduce the error, but increases the 
computation time. 

xn+1

tn+1

xn

tn

x(t)

x

t

xn+1 = xn + vnΔt

tn+2

xn+2

tn+6

xn+3

tn+3 tn+4 tn+5

Δt



Euler Method:  Constant Velocity Motion

Index time position

0 0 0

1 2 20

2 4 40

3 6 60

4 8 80

5 10 100

Differential Equation:  
dx
dt

= v0

xn+1 = xn + vΔt
Euler update rule:

Initial conditions:   mx0 = 0

v = 10 m/s
Δt = 2 s

tmax = 10 s

Parameters:



Pseudocode
Initialization 
1.Define:  object velocity v

2.Define:  time step and final time

3.Calculate number of points N

4.Preallocate arrays to store t and x values

5.Store initial conditions in x[0] and t[0]

Iteration 
6. Loop to calculate t[0] and x[0] for n = 1 to N

Present Results 
7. Plot x vs. t

x[0] x[1] x[2] x[3] x[4] x[5]
0 20 40 60 80 100

t[0] t[1] t[2] t[3] t[4] t[5]
0 2 4 6 8 10

loop to fill in x and t values:

x[0] x[1] x[2] x[3] x[4] x[5]
0 0 0 0 0 0

t[0] t[1] t[2] t[3] t[4] t[5]
0 0 0 0 0 0

loop to fill in x and t values:



Euler Method:  Constant Velocity Motion





Euler Method:  Exponential Growth
Differential Equation:  

dy
dt

= ay

Euler update rule:

yn+1 = yn + aynΔt

Initial conditions:   my0 = 1

a = 0.2
Δt = 1 s

tmax = 10 s

Parameters:

Index time position

0 0 0

1 1 1

2 2 1.20

3 3 1.44

4 4 1.73

5 5 2.07

. . .



Euler Method:  Exponential Growth
Loop with Euler update rule



Euler Method:  Decreasing step size, decreases error

error ∝ Δt

Because the Euler method is 
first-order accurate, the error 
decreases in proportion ot the 
step size:



Stability
Stability determines whether numerical errors will grow uncontrollably causing the solution “blow up.”

In many cases, stability can be achieved if the time step is small enough. The following example 
shows how to find the stability threshold for the time step.

Example:  Stability of Euler’s method for the Exponential Growth ODE

1) Start with the Euler update rule:        xn+1 = xn + axnΔt

2) Successive updates give:       x1 = x0(1 + aΔt)

x2 = x1(1 + aΔt) = x0(1 + aΔt)2

x3 = x2(1 + aΔt) = x0(1 + aΔt)3

xn = x0(1 + aΔt)n

xn+1 = xn(1 + aΔt)



Stability
3) Stability condition to prevent solution from blowing up:             xn = |1 + aΔt | < 1

4) Condition on time step:       

(a)  If a > 0,      and the Euler method is unstable for all  values 1 + aΔt > 1 Δt

(b)  If a < 0,    stability condition on  is Δt Δt <
2

|a |

Example:  if a = -0.2, then:   

      is unstable  Δt = 20
   is stable  Δt = 1

    Δt = 1 Δt = 20

xn = x0(1 + aΔt)n
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Solving a 2nd Order ODE using the Euler Method
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Newton’s 2nd law produces an ODE of the form:

Break 2nd Order ODE into Two 1st Order ODEs

d2x
dt2

=
F
m

We can write this 2nd order equation as a system of two 1st order ODEs:

dx
dt

= v

dv
dt

= a where  a =
F
m
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We can now solve each first-order equation using Euler’s method:

Solve a 2nd Order ODE

dx
dt

= v
dv
dt

= a where  a =
F
m

xn+1 = xn + vnΔt vn+1 = vn + anΔt

Position Velocity

d2x
dt2

=
F
m

The Euler method is first-order accurate and numerically unstable for 
many types of problems 🙁
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We can now solve each first-order equation using Euler’s method:

Example:  Simple Harmonic Oscillator

dx
dt

= v
dv
dt

= a where  a = −
kx
m

xn+1 = xn + vnΔt vn+1 = vn + anΔt

Position Velocity

an = −
kxn

m

m
d2x
dt2

= − kx
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Initial Conditions:

Example:  Simple Harmonic Oscillator

xn+1 = xn + vnΔt

vn+1 = vn + anΔt

an = −
kxn

m

Parameters:

m = 1
k = 1

x0 = 1
v0 = 0

Δt = 0.05

n t v x

1 0 0 1.000

2 0.05 -0.050 0.997

3 0.01 -0.100 0.992

. . . . . . . . . . . .

Update Equations



Euler’s method is inherently unstable for many 
common 2nd-order systems

Δt = 0.05
Absolute error = x − xtheory

xtheory = x0 cos(ωt)

ω = k/m

☹



Reducing the time step improves accuracy - 
But errors grow over time.

Δt = 0.01
Absolute error = x − xtheory

xtheory = x0 cos(ωt)

ω = k/m

☹



Effect of the time step 
on accuracy and 
computation time

Δt = 0.1

Δt = 10−6

Error = |x(tend) − xtheory(tend) |

Positional error:  

Computation time = time (in seconds)  
to perform the numerical integration

t_max = 10 oscillation periods



Effect of time step on accuracy

Δt = 0.1 Δt = 0.1

Δt = 10−6 Δt = 10−6

E =
1
2

mv2 +
1
2

kx2

Energy calculated from 
numerical solutions  and :x v

Energy calculated from 
theoretical  and :xtheory vtheory

E =
1
2

mv2
theory +

1
2

kx2
theory

xtheory(t) = x0 cos ωt

vtheory(t) = − x0ω sin ωt

ω = k/m



Phase Space
Phase space is an abstract space in which the state of a dynamical system is 
represented as a point that evolves in time, with each axis corresponding to one of the 
system’s degrees of freedom. 

Theoretical solution for the S.H.O:

xtheory(t) = x0 cos(ωt)

vtheory(t) = − x0ω sin(ωt)

parametric equation of an ellipse

Since the harmonic oscillator has two degrees of freedom, it will have a  two-
dimensional phase space (with axes often chosen to be the position and velocity 
of the particle).

x

v



Phase Diagram:  Plot v(t) vs. x(t)

Δt = 0.05 Δt = 0.01

☹ 😐
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The Euler-Cromer-Aspel Method
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The Euler-Cromer-Aspel Method (or Aspel Method)

In 1980, Alan Cromer published a paper citing a high school 
student, Abby Aspel, for discovering a numerical integration 
method that was stable and more accurate than the Euler 
method, especially for solving oscillatory, 2nd-order ODE’s.  

While Aspel was credited in the paper, she was not listed as 
a co-author and the method is often called the “Euler-
Cromer” or “Symplectic Euler” method.

Abby Aspel

Aspel’s contributions have recently been rediscovered and her 
name is starting to be rightfully associated with the method.
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Euler Method

xn+1 = xn + vnΔt

vn+1 = vn + anΔt

Euler-Cromer-Aspel Method

xn+1 = xn + vn+1Δt

vn+1 = vn + anΔt

Aspel Method:  The position 
update rule uses the NEW 
velocity  .vn+1

Euler Method:  The position 
update rule uses the OLD 
velocity  .vn

Aspel Method is symplectic, 
meaning it is energy conserving.

Euler Method is not symplectic, 
meaning it does not conserve 
energy.



Δt = 0.05

Euler Method Aspel Method
Δt = 0.05

Simple Harmonic Oscillator

🙂☹



Δt = 0.05

Euler Method Aspel Method
Δt = 0.05

Simple Harmonic Oscillator

absolute error absolute error

🙂☹

In this example the Aspel method is >100x more accurate then Euler!



Effect of the time 
step on accuracy and 
computation time

Δt = 0.1

Δt = 10−6

Δt = 0.1

Δt = 10−6

Δt = 0.1

Δt = 10−6 Δt = 10−6

Δt = 0.1Comparison between 
Euler and Euler-
Cromer-Aspel 
Methods



Δt = 0.05

Euler Method Aspel Method
Δt = 0.05

Simple Harmonic Oscillator:  Phase Plot

🙂☹

The Aspel method produces a trajectory in phase space that is 
much closer to being closed.



Next Lecture:  second-order methods
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