Numerically Solving Ordinary Differential
Equations (ODEs): Euler’s Method




Differential Equations

A differential equation is any equation that contains one or more

derivatives:

Constant velocity motion:

Simple harmonic oscillator:

Motion of a charge in E and B fields:

Poisson’s equation:
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Differential Equations

Ordinary differential equations (ODESs) - single independent variable.

dx d’x
— =V m Fkx =0

dt dt?

Partial differential equations (PDEs) - multiple independent variables.
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Ordinary Differential Equations (ODESs)

The order of an ODE is given by the highest derivative present

dx dx 5
1st order ODEs: E:vo E:—kx
d’x A’y kq,q,
2nd order ODEs: 1 2 Fkx =0 mﬁ — 72
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Solve an ODE analytically if you can

)
m‘;;‘ thkr=0 —p x(f)=Asin(@?)+ Bcos(w?)
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If you can’t, use numerical methods
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Numerical Integration of a First-Order ODE

Numerical integration is like analyzing frames of a movie, where the time between
framesis At =1t _,—1. N

dx
In general, we want to solve: — = f(x, 1) = v(x, )

dt



Euler Method

Goal: predict the position x,_,of an object on the next frame of the movie, given
Its current position x,

Approximate the derivative:

dx X, 1 — X
dt At

Solve for the position x,, : X, 1 =X, +V,Af (Euler update rule)



Euler Method

dx
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true path

Approximate x(f) as a Taylor series:

dx d*x ,
x(t, +AD~=x, +|— ) Ar+| — | Ar-+...
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n

The Euler method is equivalent to

Including the constant term and the
linear term

The Euler method iIs said to be
first-order accurate



Euler Method

X, 1 =X, + VAl A

n




Reducing time step helps reduce the error, but increases the
computation time.
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Euler Method: Constant Velocity Motion

| | | dx
Differential Equation: — =,
d | ndox | dmo | poston
Initial conditions: x, = 0 m O 0 O
1 2 20
Parameters: v = 10 m/s ) . 0
At=128
3 6 60
t,..=10s
4 8 80
Euler update rule: o 10 100




Pseudocode

Initialization

1.Define: object velocity v

2.Define: time step and final time
3.Calculate number of points N
4.Preallocate arrays to store t and x values
5.Store initial conditions in x[0] and t[0]

[teration

6. Loop to calculate t[0] and x[0] forn=1to N

Present Results
/. Plot xvs. t

loop to fill in X and t values:
t[0] t[1] t[2] t[3] t[4]
0 0 0 0 0
x[0] x[1] =x[2] =x[3] =x[4]
0 0 0 0 0

loop to fill in x and t values:
t[0] t[1] t[2] t[3] t[4]
0 2 4 6 8
X[0] x[1] x[2] x[3] x[4]
0 20 40 60 80

t f t f

t[5]

X[5]

t[5]
10

X[5]

100



Euler Method: Constant Velocity Motion

import numpy as np
import matplotlib.pyplot as plt

#iHHHE Parameters  #tiitiHtt #H#HRHH#EE  Analytic Solution #H#######H#
v = 10 # velocity X_true = x0 + vkt

tmax = 10 # maximum time

dt = 2 # time step

X0 = 10 # initial value of X #i#asAH##  Plot Solution #########

plt.plot(t, x, 'ro', label='Euler')

#it#  Create Arrays #itt###H##H plt.plot(t, x_true, 'b—-', label='Analytic"')
N = int(tmax/dt)+1  # number of steps in simulation plt.xlabel('t (s)")
plt.ylabel('x (m)")
X = np.zeros(N) # array to store positions plt.title("Constant Velocity Motion")
t = np.zeros(N) # array to store times plt.legend()
plt.show()
x[0] = x0 # assign initial value

#H##RH###E  Loop to implement the Euler update rule #########

for n in range(N-1):
x[n+1] = x[n] + vkdt # Euler update rule for position
tln+l] = t[n] + dt # update time
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Constant Velocity Motion
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Euler Method: Exponential Growth

d
Differential Equation: ol = ay
dt
Initial conditions: y, = 1 m O O 0
1 1 1
Parameters: q = (0.2 ) ) o0
Ar=1s 3 3 144
t,..=10s |
4 4 1.73
Euler update rule: o 5 2.07

Yn+1 = Vn T aynAt




Euler Method: Exponential Growth

Loop with Euler update rule Exponential Growth
—  Euler !
for n in range(N-1): 77~ Analytic
y[n+1] = y[n] + akxy[n]xdt .
t[n+1l] = tln] + dt
5 <
percent error using Euler Method -
16 - 47
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Euler Method: Decreasing step size, decreases error

Because the Euler method is o
first-order accurate, the error
decreases in proportion ot the 1072 ;
step size: “
5 1077
error < At § *
% 10-4 .‘,
107> ~
10-“;

e

time step



Stability

Stability determines whether numerical errors will grow uncontrollably causing the solution “blow up.”

In many cases, stability can be achieved if the time step is small enough. The following example
shows how to find the stability threshold for the time step.

Example: Stability of Euler’s method for the Exponential Growth ODE

1) Start with the Euler update rule:  x,,; = x, + ax At = X1 = X,(1 +adr)

2) Successive updates give: x; = Xo(1 + aAr)
X, = x,(1 + aAf) = xy(1 + aAr)
X3 = %(1 + aAf) = xy(1 + aAr)

x, = xo(1 + alAr)”



Stability

3) Stability condition to prevent solution from blowing up:

4) Condition on time step:

x, = xo(1 + alAr)”

x,=|1+alAt| <1

(@) Ifa>0, 14 aAr> 1 andthe Euler method is unstable for all At values

(b) If a<0, stability condition on Atis

1.0 1 '.

Example: if a =-0.2, then:

084 |

At = 1 is stable
At = 20 is unstable i
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Solving a 2nd Order ODE using the Euler Method

PHYS 365 - ASTROPHYSICS



Break 2nd Order ODE into Two 1st Order ODEs

Newton’s 2nd law produces an ODE of the form:
d*x F

dt? m

We can write this 2nd order equation as a system of two 1st order ODEs:

dx

— V

dt

dav F
— =aq where a = —
dt m
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Solve a 2nd Order ODE

We can now solve each first-order equation using Euler’s method:

Position Velocity
dv i
d_2x:£ » ﬁzv —=a  where a=—
dr? m dt at m
X,.1=x,+v At V.. =V, +a,At

The Euler method is first-order accurate and numerically unstable for
many types of problems &
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Example: Simple Harmonic Oscillator

We can now solve each first-order equation using Euler’s method:

Position Velocity
dv
d’x ﬁ — — =a where a
mﬁ = — kx dt dt

PHYS 365 - ASTROPHYSICS



Example: Simple Harmonic Oscillator

Parameters:
m=1
k=1

At = 0.05

Initial Conditions:

XO=1

VO:O

PHYS 365 - ASTROPHYSICS

Update Equations

t \Y% X

O O 1.000
0.05 @ -0.050 | 0.997
0.01 -0100 | 0.992




Euler’s method is inherently unstable for many
common 2nd-order systems

At =0.05 Xiheory = X0 COS(?)

o =1/ kim

Absolute error = X — X,y

Simple Harmonic Motion
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Reducing the time step improves accuracy -

But errors grow over time.

At = 0.01 Xiheory = Xo COS(@1)

o =1/ kim

Simple Harmonic Motion

0.35 -
01y AN [\ ﬂ I i I 0.30 -
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Absolute error = X — X,y




Effect of the time step SHO - Position Error
on accuracy and o] 2= - Euler
computation time :

10°
t_max = 10 oscillation periods 10-1-
: :
III —2
Positional error: 10
Lrror = ‘x(tend) _xtheory(tend)‘ 10-3
Computation time = time (in seconds) 10-4 -
to perform the numerical integration 5 Ar=107°

102 10=2 10!t 10° 10! 107
computation time (s)



Effect of time step on accuracy

Error

SHO - Position Error

Ar =0.1 —8— Euler

Ar = 1076

1073

10=2 107t 10Y 10t
computation time (s)

102

SHO - Energy Error

At =0.1 —8— Euler

Ar = 107°

1073

102 107t 10Y 10t
computation time (s)

102

Energy calculated from
numerical solutions x and v:

1 1
E = —mv* + —kx*
2 2

Energy calculated from
theoretical x;,,,, and vy,

1 1
E = Emv2 + Ekxt%

theory eory

Xiheory(f) = X COS wt

Viheory(!) = — Xo@ SIN @1

w =\ kim



Phase Space

Phase space is an abstract space in which the state of a dynamical system is

represented as a point that evolves in time, with each axis corresponding to one of the
system’s degrees of freedom.

Since the harmonic oscillator has two degrees of freedom, it will have a two-

dimensional phase space (with axes often chosen to be the position and velocity
of the particle).

Theoretical solution for the S.H.O: 1%
Xiheory(t) = Xo COS(?) O
vthem,y(t) = — Xy sin(wt) X

parametric equation of an ellipse




Phase Diagram: Plot v(t) vs. x(t)

At = 0.05 At = 0.01

Simple Harmonic Motion Simple Harmonic Motion

4 — Euler
—== Analytic




The Euler-Cromer-Aspel Method
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The Euler-Cromer-Aspel Method (or Aspel Method)

In 1980, Alan Cromer published a paper citing a high school
student, Abby Aspel, for discovering a numerical integration
method that was stable and more accurate than the Euler
method, especially for solving oscillatory, 2nd-order ODE'’s.

While Aspel was credited in the paper, she was not listed as Ab;‘fﬁg |
a co-author and the method is often called the “Euler- y AsSpe

Cromer” or “Symplectic Euler” method.

Aspel’s contributions have recently been rediscovered and her
name is starting to be rightfully associated with the method.

PHYS 365 - ASTROPHYSICS



Euler Method

xn+1 — xn + VnAt

Vv

1] =V, + a, At

Euler Method: The position
update rule uses the OLD
velocity v, .

Euler Method is not symplectic,
meaning it does not conserve
energy.

PHYS 365 - ASTROPHYSICS

Euler-Cromer-Aspel Method

Vv

n+1 — Vn —+ anAt

Aspel Method: The position
update rule uses the NEW
velocity v, .

Aspel Method is symplectic,
meaning It IS energy conserving.



Simple Harmonic Oscillator

Euler Method

At = 0.05
Simple Harmonic Motion
1 —— Euler |
-~~~ Analytic |
\
/ \ fﬁ\‘ f\\ f \\
\ \\I \ / *\/’ *
V
v
V
v
0 10 20 30 40 50 60

SHO - Aspel Method

Aspel Method
At = 0.05

1.00 -
0.75 -
0.50 -
0.25 -
0.00 -
—0.25 A
—0.50 -

-0.75 -

—1.00 -

| |

|

#

b

— Euler
~ == Analytic

|
|

J

#
|

’

+

|

H

f

0

10

20




Simple Harmonic Oscillator

Euler Method Aspel Method
Ar = 0.05 Ar = 0.05
C:? absolute error n | absolute err'oﬁr” v AR A

2.5~ n o.ozs«nnﬂﬂﬂﬁ”nnn

| A | 0.020 -

2.0 - |

s \ ” 0.015 -

|

1.0 - A \ 0.010 - ' '

@00MM\V““““"*“ 0:000_ ‘“'*HHi””H ” ' '

In this example the Aspel method is >100x more accurate then Euler!



Effect of the time
step on accuracy and
computation time

Comparison between
Euler and Euler-
Cromer-Aspel

Methods

Error

10—5_

10—6_

10—7_

10—8_

10—9_

10—10_

10—11_

10—12_

10—13_

SHO - Position Error

Ar=0.1 %

—)—

At = 107°

Euler
Aspel

1073 101
computation time (s)

10*

SHO - Energy Error

L —&— Euler
Ar=0.1 —e— Aspel

1073 1071 10t
computation time (s)



Simple Harmonic Oscillator: Phase Plot

Euler Method

Aspel Method

Simple Harmonic Motion SHO - Aspel Method
41 —— Euler 4 —— Euler
~=~ Analytic -~ Analytic
3 A
2 2 -
/ 1
i o O
_1 —
-2
-2 -
-3 -
_4 -
_4 -
-4 -2 0 2 4 -4 -3 -2 -1 0 1 2 3 4
X X

The Aspel method produces a trajectory in phase space that is
much closer to being closed.



Next Lecture: second-order methods
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